02/19 - 02/24
Missing Values
isnull(); isna(); notnull()



df.dropna()
default axis =0
default how = "any" , which means that if any row contain any NaN, that row will be dropped!
if how="all", rows that include NaN in every column will be dropped


df.fillna()


duplicated()
Notes: duplicated(keep='first')
default setting is keep = 'first'
duplicated(keep='last')
duplicated(keep=False)


df.drop_duplicates

pd.Series


df.groupby()



/////// df.groupby() & dictionary


pd.MultiIndex.from_arrays()
df.groupby(level, ...)


# set_index()
# resample()
# pd.Grouper()

Note: 'MS' means 'beginning of the month'


df.agg()

pd.merge()


Notes:
in df1, subject_id: sub1,sub2,sub4,sub6,sub5
in df2, subject_id: sub2, sub4, sub3,sub6,sub5

pd.concat()




df.plot(); plt.show()

Notes:
plt.subplot(num_rows, num_cols, plot_num)



Comments